Zalo QR
PHỤ LỤC F
(tham khảo)
SỰ SINH NHIỆT VÀ SỰ TÍNH TOÁN NHIỆT NGẤM
F.1. Ước tính nhiệt sinh từ cụm làm kín
F.1.1. Quy định chung
Trong khi tính toán nhiệt được sinh ra do cụm làm kín cơ khí xuất hiện là vấn đề đơn giản, một số giả thiết phải được đặt ra mà tạo ra khả năng thay đổi lớn. Hai thay đổi mà đặc biệt có thể sai là K, hệ số sụt áp suất, và f, hiệu suất ma sát.
K là một số giữa 0,0 và 1,0 là sự sụt áp khi chất lỏng được bít kín di chuyển qua bề mặt làm kín. Với các bề mặt làm kín phẳng (màng chất lỏng song song) và chất lỏng không bay hơi, K xấp xỉ bằng 0,5. Đối với các bề mặt làm kín lồi (màng chất lỏng hội tụ) hoặc chất lỏng bay hơi, K lớn hơn 0,5. Đối với các bề mặt lõm (màng chất lỏng phân kỳ), K nhỏ hơn 0,5. Theo quy luật tự nhiên, K là hệ số được sử dụng để xác định lượng áp suất chênh qua các bề mặt làm kín mà được truyền thành lực mở. Lực mở này được tính bằng công thức sau:
Fmở=A x Dp x K (F.1)
trong đó:
Fmở lực mở, tính bằng newton;
A vùng bề mặt làm kín, tính bằng milimét vuông;
Dp áp lực chênh, tính bằng megapascal;
K hệ số sụt áp suất, không kích thước.
Trong thực tế, K thay đổi trong khoảng 0,5 đến 0,8. Như một quy trình kỹ thuật tiêu chuẩn cho chất lỏng không bay hơi, giá trị 0,5 được chọn cho K. Mặc dù K được biết là thay đổi phụ thuộc vào đặc tính chất lỏng làm kín (bao gồm cả đặc tính nhiều pha) và đặc tính màng (bao gồm cả độ đày và độ côn), giá trị này được chọn như là một mốc chuẩn cho việc tính toán nhất quán. Người kỹ sư phải nhận biết được là giả thiết này đã được thực hiện.
Hiệu suất ma sát động lực học, f, là số giống với số hạng hệ số tiêu chuẩn hầu hết các kỹ sư quen với. Hệ số của số hạng ma sát tiêu chuẩn được dùng để tính tỉ số lực song song với lực pháp tuyến. Tỉ số này thường được áp dụng cho sự tương tác giữa hai bề mặt chuyển động tương đối. Các bề mặt này có thể được làm từ vật liệu giống nhau hoặc khác nhau.
Trong cụm làm kín cơ khí, hai bề mặt chuyển động tương đối là các bề mặt làm kín. Nếu các bề mặt làm kín đang vận hành khô, thì rất đơn giản để xác định được hệ số ma sát. Trong vận hành thực tế, các bề mặt làm kín vận hành dưới những chế độ bôi trơn khác nhau và các kiểu ma sát khác nhau
Nếu có sự tiếp xúc nhám đáng kể, f phụ thuộc nhiều vào vật liệu và ít phụ thuộc vào độ nhớt chất lỏng hơn. Nếu có một mạng chất lỏng rất mỏng (chỉ có một ít phân tử), ma sát có thể phụ thuộc vào sự tương tác giữa chất lỏng và các bề mặt làm kín. Với một màng chất lỏng dày, không có sự tiếp xúc cơ khí giữa các bề mặt và f chỉ là tính năng cắt sền sệt trong màng chất lỏng. Tất cả các loại ma sát này có thể được tính cùng lúc trên cùng bề mặt làm kín.
Hiệu suất ma sát được dùng để biểu thị hiệu ứng tương tác lớn giữa hai bề mặt trượt và màng chất lỏng. Việc thử thực tế đã cho thấy rằng các cụm làm kín thông thường vận hành với f trong khoảng 0,01 đến 0,18. Đối với những ứng dụng cụm làm kín thông thường, chúng ta lựa chọn được giá trị là 0,07 cho f. Điều này tương đối chính xác cho hầu hết những ứng dụng dùng nước và hydrocacbon trung tính. Chất lỏng sền sệt (như dầu) sẽ có giá trị cao hơn, trong khi chất lỏng ít nhớt hơn (như LPG hay các hydrocacbon nhẹ) có thể có giá trị nhỏ hơn.
Sự kết hợp giả thiết K và giả thiết f có thể dẫn đến độ lệch đáng kể giữa các kết quả sinh nhiệt tính được với kết quả thực tế. Do vậy, người kỹ sư phải chú ý là các tính toán này chỉ có tác dụng như một phép tính gần đúng cấp đại lượng các kết quả mong muốn. Các kết quả này phải không bao giờ được công bố như là sự an toàn tính năng.
F.1.2. Phương pháp tính toán
Đầu vào được yêu cầu:
D0 đường kính ngoài của mặt tiếp xúc của cụm làm kín, tính bằng milimét;
Di đường kính trong của mặt tiếp xúc của cụm làm kín, tính bằng milimét;
Db đường kính cân bằng cụm làm kín, tính bằng bằng milimét;
Fsp lực lò xo tại chiều dài làm việc, tính bằng newton;
Dp áp suất qua bề mặt làm kín, tính bằng megapascal;
n tốc độ quay của bề mặt, tính bằng r/min;
f hệ số ma sát (giả thiết 0,07);
K là hệ số tổn thất áp suất t (giả thiết 0,5),
F.1.3. Các công thức
F.1.3.1. Vùng bề mặt, A
A = (F.2)
F.1.3.2. Tỉ số cân bằng cụm làm kín, B
B = (F.3)
F.1.3.3. Áp lực của lò xo, psp
psp =
F.1.3.4. Tổng áp suất bề mặt, ptot
ptot = Dp (B - K) + psp (F-5)
F.1.3.5. Đường kính bề mặt trung bình, Dm
Dm = (F.6)
F.1.3.6. Mô men xoắn khi làm việc ổn định, Tr
Tr = ptot xAxf (F.7)
F.1.3.7. Momen khởi động, Ts, được ước tính tại mô men xoắn khi làm việc ổn định 3 đến 5 lần
Ts = Tr x 4 (F.8)
F.1.3.8. Công suất, P
P = (F.9)
F.1.4. Ví dụ tính toán
F.1.4.1. Ứng dụng
Chất lỏng: Nước
Áp suất: 2 MPa (20 bar)
Tốc độ: 3 000 r/min
Các tín hiệu vào:
Do = 61,6 mm
Di = 48,9 mm
Db = 52,4 mm Fsp = 190 N
Dp = 2 MPa (20 bar)
n = 3 000 r/min
f = 0,07
K = 0,5
Công thức (F.2) đưa ra:
A = (61,22 - 49,92) = 1102 mm2
Công thức (F.3) cho biết:
B = = 0,746
Công thức (F.4) cho biết:
Psp = = 0,172M/mm2
Công thức (F.5) cho biết:
ptot = 2(0,746-0,5) + 0,172 =0,664 N/mm2
Công thức (F.6) cho biết:
Dm = = 52,25 mm
Công thức (F.7) đưa ra:
Tr =0,664x1102x 0,07 = 1,42N.m
Công thức (F.8) cho biết:
TS= 1,42x4 = 5,68 N.m
Công thức (F.9) cho biết:
P = = 0,446 kW
F.2. Tăng nhiệt độ trong buồng làm kín
F.2.1. Quy định chung
Nhiệt độ chất lỏng trong buồng làm kín ở trạng thái ổn định là tính năng cân bằng nhiệt động học đơn giản. Dòng nhiệt đi vào chất lỏng buồng kín trừ dòng nhiệt ra khỏi buồng kín tạo ra dòng nhiệt mạng lưới. Nhiệt độ chất lỏng tăng hoặc giảm phụ thuộc vào dòng nhiệt mạng lưới dương hay âm. Điều này tưởng là đơn giản. Nhưng trong những ứng dụng thực tế, các dòng nhiệt vào và ra của chất lỏng trong buồng kín thực sự phức tạp.
Có một số nguồn dòng nhiệt đi vào chất lỏng. Các nguồn này bao gồm cả nhiệt được sinh ra do ma sát và sự cắt chất lỏng tại các bề mặt làm kín, nhiệt được sinh ra do sự bay chếch (hay sự chảy rối) do tổ hợp làm kín quay, và nhiệt được dẫn từ bơm qua buồng làm kín và trục (hay sự ngấm nhiệt dương). Cũng có một số nguồn nhiệt ngoài buồng làm kín. Một số nguồn này gồm nhiệt được dẫn ngược vào bơm qua buồng làm kín hoặc trục (hay sự ngấm nhiệt âm) và nhiệt bị biến mất vào không khí nhờ sự đối lưu và bức xạ.
Trong một số trường hợp, các giả thiết có thể được thực hiện làm đơn giản hóa mô hình. Ví dụ, hãy xem xét một cụm làm kín có sơ đồ hệ thống ống 11, 12, 13 hoặc 31. Với những sơ đồ hệ thống ống này, chất lỏng được bơm vào trong buồng làm kín tại nhiệt độ bơm và sự ngấm nhiệt có thể không xảy ra. Trừ khi bơm tại nhiệt độ rất cao, sự mất nhiệt cho khí quyển cũng có thể không xảy ra. Ngoại trừ trong trường hợp các cụm làm kín lớn ở tốc độ cao, sự sản sinh nhiệt do sự bay chếch thường không đáng kể và có thể bỏ qua. Việc tăng nhiệt độ khi đó có thể tính được nếu biết được những biến sau đây:
Q sự sinh nhiệt tại các bề mặt làm kín, tính bằng kilôwat;
qinj tốc độ bơm vào, tính bằng lít trên phút;
d độ ẩm tương đối (trọng lượng riêng) của chất lỏng được bơm ở nhiệt độ của bơm;
cp nhiệt dung riêng của chất lỏng được bơm ở nhiệt độ của bơm, tính bằng jun trên kilôgam kelvin. Nhiệt độ chênh, DT ( kelvin), có thể tính toán được bằng công thức sau đây:
(F.10)
Trong những ứng dụng mà sử dụng sơ đồ đường ống 21, 22, 32, hoặc 41, Chất lỏng được bơm vào trong buồng làm kín có thể tại nhiệt độ thấp hơn rất nhiều so với nhiệt độ bơm. Nếu đây là trường hợp, có thể có dòng nhiệt đáng kể hoặc sự ngấm nhiệt đáng kể trong buồng làm kín từ bơm. Việc tính toán sự ngấm nhiệt là một vấn đề phức tạp, đồi hỏi sự phân tích chi tiết hoặc sự thử nghiệm và một kiến thức sâu rộng về kết cấu bơm đặc biệt và đặc tính sản phẩm được bơm. Nếu số liệu này không có giá trị, độ nhiệt ngấm [Qnhiệt ngấm (kW)] có thể được tính bằng công thức:
Qnhiệt ngấm = U x A x Db X DT (F.11)
trong đó:
U hệ số đặc tính vật liệu;
A vùng truyền nhiệt;
Db đường kính cân bằng cụm làm kín, tính bằng milimét;
DT độ lệch giữa nhiệt độ bơm và nhiệt độ buồng kín mong muốn, tính bằng kelvin.
Một giá trị tiêu biểu cho (U X A) mà có thể được dùng để ước tính những mục đích có ống lót bằng thép không gỉ và kết cấu miếng đệm kín và kết cấu bơm bằng thép là 0,00025. Giá trị này nhìn chung sẽ tạo ra sự tính toán an toàn nhiệt ngấm.
F.2.2. Ví dụ ước tính Qnhiệt ngấm
U x A = 0,00025
Db = 55 mm (đường kính cân bằng cụm làm kín)
Nhiệt độ bơm = 175 °C
Nhiệt độ buồng làm kín mong muốn = 65 °C
DT = 175 - 65 = 110K
Qnhiệt ngấm = 25 X 55 X 110 = 1,5 kW
Nếu biết được nhiệt ngấm, sự tăng nhiệt độ (DT, tính bằng kelvin) có thể tính toán được bằng công thức sau đây;
Trong các công thức trước, sự tăng nhiệt độ là sự tăng nhiệt độ trung bình của chất lỏng trong buồng làm kín. Trong phạm vi buồng làm kín, có những vùng mà nóng hơn và lạnh hơn nhiệt độ chất lỏng trong buồng làm kín. Việc bơm có hiệu quả cụm làm kín cần đảm bảo rằng vùng xung quanh bề mặt làm kín được làm lạnh hiệu quả. Ví dụ, việc bơm nên được bơm trực tiếp tại mặt phân cách làm kín hoặc sự bơm ở nhiều lỗ có thể được sử dụng.
Trong một số ứng dụng, cần phải xác định rõ lượng giải phóng nhiệt cần để duy trì nhiệt độ buồng làm kín dưới mức nhất định. Trong trường hợp này, sự tăng nhiệt độ lớn nhất cho phép được tính bằng bớt đi nhiệt độ lớn nhất cho phép trong buồng làm kín từ nhiệt độ giải phóng nhiệt. Để tính năng làm kín được tốt, sự tăng nhiệt độ lớn nhất nên được duy trì tại 2,8 K đến 5,6 K. Khi đó nó trở nên đơn giản trong việc bố trí lại công thức (F.10), (F.11) and (F.12) để giải quyết cho lưu tốc giải phóng nhiệt.
Đối với Sơ đồ đường ống 11,12,13, hoặc 31, công thức:
Đối với Sơ đồ đường ống 21,22, 32, hoặc 41, công thức:
Sự tăng nhiệt độ được dùng trong những phép tính này là sự tăng nhiệt độ buồng làm kín. Sự tăng nhiệt độ tại bề mặt làm kín sẽ lớn hơn sự tăng nhiệt độ buồng làm kín. Nếu các công thức (F.13) và (F.14) được dùng để tính lưu tốc nhỏ nhất dựa vào nhiệt độ buồng làm kín, các bề mặt làm kín có thể quá nhiệt và làm việc kém. Hệ số thiết kế ít nhất là hai nên được ứng dụng cho lưu tốc. Việc bơm giải phóng nhiệt cũng phải trực tiếp tại mặt phân cách làm kín để đảm bảo làm lạnh được chính xác.
Xem lại: Bơm - Các hệ thống làm kín trục cho bơm quay và bơm ly tâm - Phần 31
Xem tiếp: Bơm - Các hệ thống làm kín trục cho bơm quay và bơm ly tâm - Phần 33